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We study the intramolecular proton transfer in the amino acid glycine in aqueous solution. We show that this
system is an example of nonequilibrium solvation, where the proton-transfer step is fast and the solvent
relaxes afterward. We show how the physical picture of equilibrium vs nonequilibrium solvation arises naturally
within the framework of the quantized Zwanzig Hamiltonian.

I. Introduction

In charge-transfer reactions in polar solvents it is often not
sufficient to know the average response of the solvent, because
the microscopic details of the solvent dynamics are crucial.1

To give a concrete example, let us assume that the solvent
molecules have a dipole moment. In one limit, assumed by the
transition state theory (TST), the transferred charge moves very
slowly compared to the reorientation of solvent dipoles: the
effect of the solvent is to “clothe” the charge with anequilibrium
solvation. In this picture, the reaction coordinate is solely
determined by the reacting species and the appropriate potential
to describe its dynamics is the mean field potential (MFP), which
is a time-average of the effect of the solvent.

The other extreme limit (assumed, for example, by Marcus
theory)2 is that the transferred charge moves so quickly that
the solvent dipoles are nearly frozen during the reacting event.
In this limit, anonequilibriumsolvation description is appropri-
ate. The potential energy surface (PES) that describes the
dynamics is not some time average (like the MFP) but a specific
instantaneous configuration that favors the reaction (e.g. the
symmetrized potential of Marcus theory), and as a result, the
reaction coordinate can be determined from the solvent.

In intermediate cases there will be a finite time of reorienta-
tion of solvent dipoles, and this lag causes a retarding effect on
the transferred charge. This effect is commonly described by
the generalized Langevin equation (GLE)

whereVh(s) is the potential for the reaction coordinate,F(t) is a
fluctuating force from the solvent, andγ(t) is the dynamic
friction.

In the limit where the reorientation time of the dipoles is
very small, it can be shown3 that this equation reduces to the
TST picture and the potentialVh(s) should be equal to the MFP.
In addition, a derivation4 of the GLE eq 1 from linear response
theory suggests that deviations of GLE from the TST result can
be understood as Gaussian fluctuations around the solution of
GLE for a potential equal to the MFP.

In the opposite limit of nonequilibrium solvation, it is much
less clear how to justify the choice of the potentialVh(s) in eq
1 from microscopic considerations. These questions were
examined in a series of papers by van der Zwan and Hynes,5,6

and their ideas were applied to SN2 reactions by Hynes, Wilson,
and co-workers.7,8 A very brief summary of their findings
follows.

In those studies a parabolic barrier was assumed. If
-1/2mωb

2s2 is the bare gas-phase potential and-1/2mωeq
2s2 is

the MFP barrier, it was found7 that (in the frozen solvent limit)
the barrier that is relevant for the dynamics has curvature

whereγ(t) is the friction kernel from the GLE eq 1 (the value
at t ) 0 appears in eq 2 because of the frozen solvent
assumption). A molecular dynamics simulation in that work
showed thatω ≈ ωb; i.e., the effect of nonequilibrium solvation
is to modify the MFP to almost the gas-phase potential. This
result suggests a completely different picture than the equilib-
rium solvation limit, where (as we mentioned earlier) the
dynamical effect of the solvent can be interpreted as Gaussian
fluctuations around the MFP result.

More insights into the interplay between the dynamics of the
solvent and the transferred charge can be provided by an
alternative formulation of the GLE due to Zwanzig.9 He proved
that when the Hamiltonian

is integrated in the bath coordinates, the reaction coordinate s
obeys the GLE eq 1 with friction

In eq 3, the potentialU(s) is defined as
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and it is equal to the MFP for the Zwanzig Hamiltonian eq 3.
Any choice for the potentialU leads to a GLE eq 1 withVh )
U. We must make a physically motivated choice forU. We
will see in the next section why we choseU to be the MFP
instead of the equally plausible (and correct) choice of the bare
potentialU ) V(s).

The hypothetical harmonic environment defined by eq 3
exerts a force equal to the force exerted by the real anharmonic
environment. The Zwanzig formalism allows for a natural
quantum generalization of the GLE: the Hamiltonian eq 3 is
treated quantum mechanically.

At this stage, it is not at all obvious whether the Hamiltonian
eq 3 can reproduce the physical pictures of equilibrium/
nonequilibrium solvation described earlier in the Introduction.
This will be the topic of the next section, and the conclusions
will be applied on the glycine system in the last section.

II. Nonequilibrium Solvation in the Kramers Problem

We have already mentioned that an example of nonequilib-
rium solvation is charge transfer in the deep tunneling limit as
described by Marcus theory. The physical picture suggested by
Marcus theory should be obtained as a limiting case of eq 3 at
the extreme quantum limit. The purpose of this section is to
show how this limit is recovered. First, let us recall that the
essential feature of Marcus’ theory is that (in the deep tunneling
limit) the reaction takes place when the environment sym-
metrizes the PES and that the activation energy for this to
happen is equal toEr/4, whereEr is the reorganization energy
of the solvent (for clarity of presentation, we assume for the
moment a symmetric potentialV(s)).

The quantum version of the Hamiltonian eq 3 was first solved
numerically10 only a few years ago, for a variety of temperatures
and frictions. We have developed an alternative analytical
approach11 (the exponential resummation of the evolution
propagator), which has the advantage that it allows for easy
calculation of high-order nonadiabatic corrections. We were able
to reproduce the numerical results in the moderate quantum
limit.11 However, our method did not work well in the extreme
quantum limit (T ) 100 K) where the transmission coefficient
(defined as the ratio of the exact quantum rate over the TST
rate) is larger than 1000. In a later paper,12 we were able to
reproduce the exact numerical result in this extreme quantum
limit, by employing a simple adiabatic approximation, with the
crucial difference that we coupled the counterterm of the
Hamiltonian eq 3 with the system potential, i.e., the reaction
coordinate moves in the potential

which, according to eq 5, is equal toV(s). Note that if we assume
that the bare potential has a parabolic form, then the potential
eq 6 is equal to the van der Zwan-Hynes result eq 2. We will
now explain why this potential is able to describe the quantum
dynamics correctly, even in a low-level adiabatic approximation.

For clarity of presentation we will examine a simple two-
dimensional case, as depicted in Figure 1 (recall that for the
moment we examine the symmetric PES case), where the
reaction coordinate s is coupled to a single bath oscillatorqk

with frequency ωk. The potential energy surface has the
following structure:

In this 2-dimensional picture, the potential eq 6 is

Before we examine the quantum limit, we note that the
minimum energy path is the trajectoryq ) cks/mkωk

2; i.e., it is
the straight lineR-P that joins the minima, along which the
potential is equal to the MFPU(s) ) V(s) - 1/2γ(0)s2 (if we
had included the notorious counterterm in the definition of the
Zwanzig Hamiltonian, the MFP would be equal to the bare
potentialV(s)).

We showed in the Introduction that we expect the MFP to
be the potential that reproduces the TST physical description,
while the bare potential describes motion in the frozen solvent
limit. In the Zwanzig Hamiltonian eq 3, our choice ofU(s) to
be the MFP was made in order to have the MFP along the
“classical” trajectory, i.e., the minimum energy path.

In any case, the above discussion shows that, in the classical
limit, the Zwanzig Hamiltonian leads to a GLE with a potential
equal to the MFP, which as we mentioned earlier is known3 to
correspond to the dynamics described by TST.

We now turn our attention to the extreme quantum limit. We
make the following observations regarding Figure 1:

(i) The potential eq 8 is the potential along the trajectoryqk

) 0.
(ii) The potential energy surface is symmetric along this

trajectoryqk ) 0.
These two observations show that the potential eq 8 provides

the same physical description as Marcus theory, where reaction
takes place along the symmetrized potential. Can the dynamics
associated with the potential eq 8 reproduce the Marcus
activation energy?

(iii) The reorganization energy of the 1-dimensional oscillator
of our example is

(iv) The quantum reaction rate can be calculated using the
Miller-Schwartz-Tromp formula:13

whereZR is the partition function for the reactants,Cf(tc) is the

Figure 1. Locations in the (s, qk) plane of the minima (R, P) and saddle
point (s, qk ) 0,0). The minima (Rs, Ps) of the potential eq 8 are also
shown.
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flux-flux autocorrelation function, andtc ) t - iâ/2 is a
complex time.

(v) We will now calculate the partition functionZR of eq 10.
We have to average this partition functionZR over all the initial
bath configurations. Remember that the considerations of this
section apply to the case when the motion of the reaction
coordinate is fast compared to the solvent, so we cannot take
bath averages as in the equilibrium solvation case. However,
the partition function ZR is calculated with the reaction
coordinate fixed, so there is no inconsistency in taking this
average. The averaging over the bath initial positions leads to

which means that the partition function for the reaction
coordinate is not evaluated with the bare potentialV(s) but with
the mean field potentialVMFP(s).

(vi) On the other hand, the correlation functionCf is evaluated
with the potential eq 8, which is equal to the potential along
the “sudden path”qk ) 0.

(vii) The previous two observations suggest thatZR andCf

use energy eigenstates that come from diagonalizations of
different potentials, which happen to have different minima. The
energy differenceEa between the minima of these two potentials
is implicitly built in the rate calculated by eq 10 as a factor
exp(-âEa).

(viii) We will now calculate this energy differenceEa. The
minimum of the potentialU(s) (i.e. of the MFP for the Zwanzig
Hamiltonian, as we explained above) is at the pointR in Figure
1 and is equal toUmin(s0). The minimum of the “symmetrized”
potential eq 8 is ats ) -s̃0 (the coordinate ofRs in Figure 1)
and is equal toŨmin(s̃0). Therefore,

Using eq 8, this is equal to

whereV(s) is the bare system potential. In a spin-boson-type
Hamiltonian, it iss̃0 ) s0, leading to

whereEr is the reorganization energy eq 9. This result means
that the factor exp(-âEa), which we showed earlier that
multiplies the rate eq 10, is nothing but the Marcus activation
energy. The presence of the extra termVmin(s̃0) - Vmin(s0) in
eq 13 is due to the fact that the minima of theV(s) change in
the symmetrized configuration for the type of potential we have
used.

(ix) Very similar considerations are valid in the case of a
biased potential. When the bare potential is not symmetric, then
the path that symmetrizes the bare system potentialV(s) is not
at qk ) 0 but at a pointqk ) q̃k ) fixed. The potential can be
symmetrized by adding the term (Σkckq̃k)s ) c̃s. Though we
cannot find the setq̃k, all we need is a numberc̃ such that the
coupling termc̃s symmetrizesV(s), when the well minima are
symmetrically placed with respect to the transition state at(s0.
It is c̃ ) ε/(2s0), whereε is the potential bias. The “sudden”
path along which the reaction takes place is thenq ) q̃k ) fixed,
and we can proceed exactly as in the symmetric case (the
activation energy will turn out to have the form (Er - ε)2/(4Er),

similar to Marcus’ theory). Here we have made use of the fact
that a Zwanzig Hamiltonian that has the centers of the bath
oscillators shifted byq̃k leads to a GLE with the same friction
γ(t) as the original Hamiltonian eq 3.

We now summarize the results of this section: (1) In the
classical limit (when the reaction coordinate follows the
minimum energy path), the Zwanzig Hamiltonian leads to a GLE
with a potential equal to MFP. This is an example of equilibrium
solvation. (2) One example of nonequilibrium solvation, the
classical motion in a frozen solvent environment as described
by the van der Zwan-Hynes result eq 2, is recovered as classical
motion along the potential of eq 6. (3) Another example of
nonequilibrium solvation, the deep tunneling picture of Marcus
theory, appears as a limiting case of the Zwanzig Hamiltonian
eq 3, when we make the assumption that the flux-flux
correlation function should be calculated using an adiabatic
approximation and using the potential eq 6, which is the potential
along the symmetrizing path of the Marcus’ theory. (4) One
computational scheme in this deep tunneling limit is the
following: (a) Find the solvent configuration for which the bare
potential is symmetrized. (b) Calculate the correlation function
Cf using the potential eq 6. (c) Calculate the partition function
ZR of the reactants using the mean field potential as the potential
for the reaction coordinate.

Note that we do not mix the use of gas-phase and MFP
potentials. We always use the gas-phase potential in the above
scheme, but the average over initial bath positions when the
reaction is held fixed for the calculation of the partition function
ZR leads to the appearance of the MFP.

We will apply these ideas to the glycine system in the
following section.

III. Proton Transfer in Glycine

The dynamics of amino acids in aqueous solution is of
paramount importance, given their pivotal roles as the building
blocks for many biological macromolecules. While in the gas
phase amino acids exist as nonionic neutral forms (NF), in the
aqueous phase the zwitterionic forms (ZW) predominate. A
prototype system to study this effect is glycine, because it is
the smallest amino acid (it has only 10 atoms) and because of
the availability of experimental data. Recent studies in the
literature have focused on the delineation of the potential energy
surface for glycine in aqueous solution and on thermodynamic
investigations related to intramolecular proton transfer.14-20

In the gas phase the neutral form of glycine is more stable,
while the zwitteronic form is more stable in the aqueous phase.
In particular, the PES in the gas phase is very asymmetric, with
barrier height in the ZWf NF direction equal toVZWfNF )
1.1 kcal/mol, while the barrier height for the reverse direction
is VNFfZW ) 19.6 kcal/mol.

The mean field potential for the reaction in solution is also
very asymmetric but in the opposite direction; i.e., the zwitter-
onic form is more stable. The barrier heights are17 VZWfNF )
14.4 kcal/mol andVNFfZW ) 7.1 kcal/mol. It has been

Figure 2. Intramolecular proton transfer in glycine. The transferred
proton is labeled in boldface.
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suggested,18 however, that these values depend on the level of
quantum chemistry basus set used in ref 17.

The experimental values for the reaction rates and activation
energy in solution are

A simple calculation shows that the TST prediction using the
MFP barrier heights is too large by 3 orders of magnitude.

It has been proposed18-20 that the reaction takes place in 2
steps: (1) The gas-phase neutral conformation is in a shallow
minimum of the PES. When we place the glycine in water, there
is some reorientation of amino and acid groups to a different
neutral conformation, which is more favorable for proton
transfer. To reach this new conformation, there is a free energy
barrier 10.9 kcal/ mol. (2) From this new neutral conformation,
the proton transfer is essentially barrierless.

We propose an alternative 2-step mechanism: (1) The original
gas-phase neutral conformation is symmetrized by the solution.
A simple calculation shows that the Marcus activation energy
for this step is 1.75 kcal/mol, i.e., smaller than the energy cost
for the glycine reorientation that was mentioned above. (2) The
proton tunnels suddenly in the symmetrized configuration. We
have checked that the symmetrized potential has height 11 kcal/
mol and transfer distance 0.7 Å; therefore, the quantum limit
of the previous section applies.

The crucial point in our proposed 2-step transfer mechanism
is that the proton- transfer step (Figure 2) is very fast compared
to the solvation dynamics. In fact, a quantum mechanics/
molecular mechanics simulation’s has verified this, showing that
the proton-transfer step is very fast and takes place in a frozen
solvent environment and that the solvent relaxes after the transfer
step.

A. Potential Parameters.For the system under study, the
total potential functionVtot is expressed as

whereVRSandVSSdescribe the solute-solvent and the solvent-
solvent interactions. For our calculations, we use an analytical
potential function for the glycine-water system reported by
Nagaoka and co-workers.16 This potential describes the reactive
potential energy surface, as well as the interaction energy with
water. The potential energy function was obtained using the
empirical valence bond (EVB) method. The EVB method uses
the valence bond concept with regard to ionic-covalent
resonance to obtain the Hamiltonian for an isolated reactive
molecule and then evaluates the Hamiltonian for the reaction
in solution by adding the calculated solvation energies to the
diagonal matrix of the ionic resonance forms.21 Using this
method, the potential function is written as

where R refers to glycine (reactant) and S refers to water
(solvent).V11 andV22 are the energies for the zwitterion (ZW)
and the neutral (NF) resonance forms, respectively.V1

int, and

V2
int, which describe the interaction energy for the ZW-water

and the NF-water interactions, respectively, are of the form
described by Clementi and co-workers22-24

whereRij is the distance between the atomi on glycine and the
atom j of the nth water. The square of the exchange matrix
elementV12

2 is described using the form employed by Chang
and Miller:25,26

where∆q is the deviation from the reference geometry (transi-
tion state in our case.)

The potential eqs 16-19 were chosen in ref 17 so that they
reproduce the set of energies and forces calculated at the HF/
6-31+G* level. A relatively small basis set was employed
because the calculation of electronic energies and forces were
required at many points and because it could reproduce some
results that had been derived with the use of a larger basis set.
More recent explorations and advances on this topic can be
found in refs 18-20.

For the solvent-solvent interaction, we use the TIP4P
model.27,28 The TIP4P model is a 4-site model, where the
negative charge is moved off the oxygen and toward the
hydrogens, at a point M on the bisector of the HOH angle. In
this model, there is intermolecular Coulombic interaction
between the hydrogen atoms and the M site and Lennard-Jones
interaction between the oxygen atoms27,28

with Aoo ) 600 000 Å12 kcal/mol andBoo ) 610 Å6/mol. The
charge on the hydrogen atoms isqH ) 0.52, and the charge at
the ghost site isqM ) 1.04. In the TIP4P model the HOH angle
is 104.52°, the O-H distance is 0.9572 Å, and the distance
from the M site to the O site is 0.15 Å. TIP4P yields the correct
density for liquid water and has been shown to reproduce
experimental and structural data at 25°C and 1 atm.29

B. Molecular Dynamics.The purpose of the MD simulations
here is to calculate the dynamic frictionγ(t) exerted on the
transferred proton in glycine, which is then used as an input
for the Zwanzig Hamiltonian in the form of its cosine Fourier
transform, which is the spectral densityJ(ω). Using the potential
parameters described above, we performed molecular dynamics
simulations placing one glycine molecule and 255 water
molecules in a cubic box with side 19.75 Å. The coordinates
of glycine were fixed using the bond distance and angle
parameters for the gas-phase transition state,17 for the reasons
that were explained in the previous section. The box length and
number of water molecules were chosen to correspond to 0.997
g/cm3, the mass density of glycine-water solution at room
temperature.

The equations of motion were integrated using the modified
RATTLE algorithm,30 which incorporates the constraint method
that was originally developed for the SHAKE algorithm.31 The
long-range Coulombic forces for the water-water and glycine-
water interactions were spherically truncated to zero atrc )
9.84 Å using a smoothing function.32

kZWfNF ) 175 s-1

kNFfZW ) 4.4× 107 s-1
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The molecular dynamics simulations were carried out with a
time step∆t ) 0.1 fs. After equilibrating for 10 ps, the MD
trajectories were run for 10 ps. During the MD simulation, the
transferring proton was held fixed in the gas transition state
configuration.17 The force on the proton was recorded for each
time step and used to calculate the dynamical frictionγ(t). By
taking the inverse Fourier cosine transform ofγ(t), we calculated
the spectral densityJ(ω).

Figure 3 shows a plot of the spectral densityJ(ω)/ω as a
function of the frequencyω.

IV. Results and Discussion

Once we obtain the spectral densityJ(ω), we can proceed
with the calculation of the quantum rate using the Miller-
Schwartz-Tromp formula eq 10. The flux-flux correlation
function that appears there is calculated from

whereH ) Hs + Hq + f is the total Hamiltonian. Details of the
evaluation of eq 21 can be found in our earlier publications.11,12

For the quantum calculation we followed the scheme outlined
in section II, which requires the bare system potential. To
calculate the partition functionZR appearing in eq 10, we need
the MFP and not the bare potential; as we explained in the
previous section, we used the MFP calculated in an earlier
simulation17 and for the reactant and product frequencies we
used the experimental value15 ωNH ) 3058 cm-l. We obtained
the following results:

They are in good agreement with the experimental results eq
15.

In the last 5 years, there has been substantial progress in
developing methods for the numerical solution of the quantum

Hamiltonian eq 3 for proton transfer, where there is no small
perturbation parameter. In this paper we examined some of the
subtleties that remain to be resolved before these numerical
methods are applied to realistic systems.

In classical charge transfer, the equilibrium solvation picture
assumed by TST is well understood. The nonequilibrium
solvation picture is far less clear, but a series of papers by Hynes
and co-workers lead to the result eq 2. In section II we used a
simple two-dimensional PES and showed how these two
solvation pictures are recovered in different limits of the classical
Zwanzig Hamiltonian. We then examined the quantum Zwanzig
Hamiltonian in the deep tunneling limit. We showed that a
simple adiabatic approximation for the evolution operator gives
good numerical results when the flux-flux correlation function
is evaluated using the potential eq 6, because this is the potential
along the PES-symmetrizing sudden tunneling path of the
Marcus theory. In addition, the potential along this path is the
same as the potential eq 2 used in Hynes’ classical nonequi-
librium solvation theory.
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solution calculated from our molecular dynamics simulation. The
frequency is in reduced units ofâp, in which a unit of 1 corresponds
to a frequencyω ) 200 cm-1.
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